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ABSTRACT 

This report contains the formulation and analysis of a model to measure, compare, and contrast 
the effects of counterforce (pre-launch attack) and active defense (post-launch attack) against tac- 
tical ballistic missiles (TBM's). It is shown that without counterforce an active defense system 
could require an impractical number of weapons to counter incoming missiles and/or their war- 
heads. This number is shown to decrease geometrically as effective counterforce is used, so that 
the expected number of warheads killed increases dramatically with counterforce that is only mod- 
estly effective. Actual distributions of warheads reaching the target area are shown to be complex 
mixtures of binomial distributions. It is shown that normal approximations to these distributions 
based on the easily-calculated means and variances often agree poorly with the actual distributions. 
This is especially true when using effective counterforce. 



1 Introduction 

The purpose of this paper is to present and analyze a model of theater ballistic missile (JEM) 
launcher and missile flight operations so that comparisons can be made of the effectiveness of var- 
ious strategies to counter the threat The model presented here extends earlier analysis and results 
found in Conner, Ehlers, and Marshall [1993]. 

Figure 1 shows a schematic of the operations of a TBM launcher and the missile assumed in this 
report. Launchers are expected to be stored in some fixed storage area. When hostilities are about 
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Figure 1: Schematic of Theater Ballistic Missile Operations 

to commence the launchers will move to a forward area for assembly, fueling and mating with the 
missiles. From there a launcher will move to its launch area, and after launch will return to the for- 
ward area to prepare for the next launch. We assume that each launcher has the potential to launch 
m missiles, after which it must be taken out of service for an extended time. The reason could be 
that it must undergo extensive repair and refit, or it could run out of missiles. We also assume that 
each missile has n (£1) warheads. 

In this paper we assume that there are five phase in the TBM operation when the missile system 
could be attacked. These are 

(a) Counterforce 
1. Attack of the launcher with mated missile before launch between assembly area 
and launch site. 1 



2. Attack of the launcher after missile launch either at the launch site or on return to 
assembly area. 

(b) Active Defense 
3. Attack of the missile during the boost phase, 

4. Attack the missile on reentry before multiple warheads separate, 

5. Attack each warhead in the terminal phase. 
The effectiveness of attacking the system in each of these five phases is assume to be summa- 

rized by a kill probability px for the j-th phase, or equivalently by a survival probability qh where 
q{ = 1 -p^ Although it is more usual to formulate a model in terms of kill probabilities, survival 
probabilities are used in Section 2 because of the simplification that results in model development 
and presentation of results. Our objectives are to find the probability distribution, mean, and vari- 
ance of the number of warheads reaching the target area from each launcher, and the expected num- 
ber of weapons required in each phase, in terms of the maximum number missiles per launcher (m), 
the number of warheads per missile (n) and the five survival probabilities for the five phases as 
shown in Figure 1. Using expressions for these quantities, in Section 3 we compare the effect of 
changing the model parameters to demonstrate that counterforce, with effectiveness measured by 
qx and q2, will almost surely be a necessary part of a layered defense system; without at least a mod- 
est success rate in prosecuting the launchers effective active defense may not be feasible. 

2 The Anti-TBM Model 
We build the mathematical model in stages following the missile's path from being mounted on 

the launcher to its or its launcher's destruction, or the arrival of its warheads in the target area. First 
we develop the probability distribution, mean and variance of the number of missiles that are suc- 
cessfully launched from a given launcher. These clearly will depend on the counterforce effort 
against the launcher. Next we derive the probability distribution, mean and variance of the number 
of missiles that survive the boost and reentry phases. Finally we find expressions for the probability 
distribution, mean and variance of the number of warheads that survive the final phase. The distri- 
bution of the warheads surviving to reach the target area is a complex mixture of Binomial proba- 
bilities. The section ends with numerical examples to illustrate the results. A detailed analysis using 
the model is presented in Section 3. 

2.1 Launcher Movement Phases 

Let X be the number of missiles launched from a given launcher before it is either destroyed or 
has launched m missiles. We assume independent attacks each time the launcher attempts an out- 
ward journey to the launch site, and similarly for each time it attempts an return journey to reload. 
Thus X is a random variable that can take on any integer value from 0 (the launcher is destroyed 
on the first outward journey) to m (all attempts to destroy the launcher fail). Note thatX > i if and 
only if the launcher survives the first outward journey, and then survives i succeeding cycles back 
to the reload point and out again to the launch site. Thus 

L It is understood that a launcher may employ a number of tactics on its way to or from the launch site, such as stop- 
ping in hide sites. The model summarizes the effects of these strategies in a single survival or kill probability. 



Pr{XX)}=ft 
Pr{X>l}=ft(ftft) 

Pr{X>2}=ft(ftft)2 

• • • 

Pr{X>m-l}=ql(qlqdm-1 

Pr{X>m}=0. 

By summing this cumulative tail distribution (see result 1 of the Appendix): 

E[X] = Xft(ftft)' = . (1) 
«Tl (i-«i«2) 

This equation holds if both 0 £ ft < 1 and 0 £ ft < 1, and is equal to /n when both ft and ft are 
equal to 1 (zero effect in killing the launcher before or after launch). 

To find its variance we need to find its second moment Using result 2 of Appendix, the second 
moment of X is 

^„2,      2ft (ftg2) [1 -m (ftg2) w~1+ 0" - 1) (gift) W3 , ?i <1 - (gift)")        „, £   |^    J  +         ^ 

d-(ftg2))
2 l-Cgjga) 

when both 0 £ ft < 1 and 0 < ft < 1, and is equal to m2 when both ft and ft are equal to 1. 
We find the variance of X in the usual way by subtracting the square of Equation (1) from 
Equation (2). 

We now turn to finding the expected number of weapons required in the first two phases. Before 
attempting to do this it is necessary to make two important assumptions which are assumed to hold 
in all five phases. First, we assume that every time there is an opportunity to attack the launcher, 
the missile, or one of its warheads, this opportunity is taken and prosecuted with a single weapon. 
It may be that in practise more than one weapon is used, so that the numbers determined by the 
model in this report can be thought of as lower bounds. Second, the extreme case of some kill prob- 
ability being zero in a given phase can be obtained in one of two ways, either (i) by not attempting 
an attack during that phase, or (ii) by attacking with a completely ineffective weapon system. In 
this paper we assume that the first of these is true; any time we use ap{ of zero (ft of one) in phase 
i we assume no weapons are expended in phase i. The expected numbers of weapons required 
should not be interpreted as estimates of weapons requirements in actual operations. In this paper 
they are intended as an aid in gaining insight when comparing the effectiveness of changing kill 
probabilities in the various phases. 

Let WBL and W^ be the numbers of weapons used in the "before launch" and "after launch" 
phases respectively against the launcher. Notice that if no missiles are launched, Wf^ is zero (the 
launcher was destroyed on its first outward journey). It is easy to show that no matter how many 



missiles arc launched from a given launcher, W^L=X and its first two moments are given by Equa- 
tions (1) and (2). 

By following the cycle of the launcher one can see that the cumulative tail distribution of WBL 

is given by 
Pr{WBL>i} = (qlq2)

i if i = 0,2,4, ...,(m-l), 

= 0 ifi2»m. 

Using result 1 of the Appendix, 

l-(?i<72)
m 

E[WBL\ = 
l-?i<72 

and by comparing this with Equation (1) we can see that 

E[WB]}=E\X]/qi. (3) 

As our analysis progresses through the boost and reentry phases, expressions are found that re- 
quire the probability mass function (pmf) of X. From the cumulative tail distribution above this is 
seen to be 

Px(0) = l-<Zi, 

Px<f) = ?i(l - QiQ^QxQit1   ,i« 1,2,..., m-1, (4) 

Px(»0 = ?i(?i<72)m"1- 

22 The Boost and Reentry Phases 

The boost phase and reentry phase survival probabilities are q3 and q4 respectively (see 
Figure 1). Let the number of missiles surviving both of these phases (per launcher) be Y. Clearly 
this is also a random variable, and if we assume that the attempt to shoot down a given missile in 
either phase is independent of the outcomes of earlier or later attempts at other missiles, the con- 
ditional random variable [1TX] has a Binomial distribution with parameters X and q3q4. Thus 
E[Y\X] =Xq3q4 and Var[FlX] =Xq3q4 (1 - q3q4). By unconditioning on X, the expected number of 
warheads surviving the through the reentry phase is 

E[Y]=q3qAE\X] (5) 

where E[X] is given by Equation (1). 
The variance of Y is found using the standard conditional variance argument, 

Var[Y\ = EdVcuiYDQ] + Varx{E[YDQ], 

so 

Var\Y] = q3q4 (1 - q3q4)E\X] + (q3q4)
2Var[X), (6) 

where Equations (1) and (2) are used to find Var\X]. 



To find the pmf of Y, note that 

where0^;</,0<q3q4<Land   b{j\i,p) = Np^l-p)'"7 

Unconditioning on X we find 

PY(J) = J,b(iJ,q3qA)px(i) , j = 0,1,2, ...,m, (7) 
«•=7 

where thepx(0's are given in Equation (4). 
Let WB and WK be the number of weapons used in the boost and reentry phases respectively 

against the missiles from a given launcher, and assume that exactly one weapon is used against 
each in each phase. If X survive launch, WB = X and WK is a Binomial random variable with param- 
eters X and q3. Thus E[Wy = E[X], and E[W£ = qJE.[X\. 

23 The Final Phase 
In the final phase the probability that a given warhead survives an attack is q5. Again we assume 

independence among all attempts to destroy incoming warheads. Let the number of warheads sur- 
viving the final phase from the i-th incoming missile be Z„ i = 1,2,..., Y Each Zx is a Binomial 
random variable with parameters n and qs, so E{Z& = nqs and Var[Zi] = nqs(l-qs). Let the number 
of warheads surviving the final phase (per launcher) be H, so 

Conditioning on Y, E[H\Y] = nYqs and Var[H\Y\ = IVarfZJ = «TftCWs)- Unconditioning, 

£[#]=/K75E[y] (8) 

and 

Var[H] = /fc75(l-<75)£m + n2q5
2Var\Y\, (9) 

where £[y] and Var{Y] are given by Equations (5) and (6) respectively. 
The pmf of H, pn(k), is found in a similar way by first conditioning on Y. If Y = 0 (no missiles 

survive through the reentry phase) no warheads can reach the target area, so pjjuKO \0) = 1. If 
Y=j > 0, H is the sum of; identically distributed binomials so thatpfluK* \j) = b(k, nj, q5). 

Unconditioning, 



P//(*) = y£lb(k;nj,qs)pYU),k = 0,1,2,..., mn, (10) 
;-* 

where thepy0)'s are given in Equation (7). 

Let WF be the number of weapons used in the final phase. If Fmissiles survive the reentry phase 
and each carries n warheads, then Wv = nY. Thus the results on 7 can be used to calculate the mea- 
sure of interest on Wp. 

Figure 2 demonstrates the model by showing the cumulative tail distribution of H for three dif- 
ferent sets of survival probabilities. For all three cases the number of missiles per launcher (m) is 
20, and the number of warheads per missile (/i) is 10. The rightmost curve is obtained using no (or 
completely ineffective) counter force (qx = q2= 1), boost and reentry survival probabilities (q3 and 
q4) of 0.7, and a final phase warhead survival probability (qs) of 0.4. The center curve is obtained 
by decreasing q3> and qA from 0.7 to 0.6, and q5 from 0.4 to 0.3. The leftmost curve is obtained using 
the original set of parameters but decreasing both qx and q2 from 1 to 0.9. Clearly a modest increase 
in kill probability in counterforce operations from 0 to 0.1 has a dramatic effect on the number of 
warheads reaching the target area. An increase in kill probability from 0 to 0.1 in the two phases 
of the launcher shows a drop in the 10-th percentile from 52 warheads to 23, compared to a drop 
from 53 to 31 for a similar increase in kill probability in the boost, reentry and final phases. Another 
way to interpret the three curves is to note that the chance of at most 20 warheads (10% of a poten- 
tial of 200) reaching the target area is 3% for the base case. With a given improvement in active 
defense this increases to 46%, but if that improvement were made in counterforce instead of active 
defense it would increase to 87%. These numbers are shown in Column 2 of Table 1. Columns 3 
through 6 show the expected number of weapons used in each phase. A small improvement in 
counterforce effectiveness sharply decreases the number of weapons required for active defense. 
Note that the zero entries in columns 3 and 4 result from the assumption that when qx = q2 = 1, it 
is assumed that no counterforce is attempted. 

The next section contains a more detailed analysis of the model as parameter values are varied. 

3 Model Analysis 
Throughout this section results are demonstrated using kill probabilities rather than survival 

probabilities px through ps, where pt = 1 - q,. We refer to a kill probability vector which is defined 
to be (pi, p2,Pi,P4, Ps). For example (0,0.2,0.3,0.5,0.6) represents no chance of killing the 
launcher in its outward journey to the launch site, a 20% chance of kill on its return journey to re- 
load, a 30% chance of killing the missile in its boost phase, a 50% chance in its reentry phase, and 
a 60% chance of killing each warhead in the final phase. 

Theater anti-missile defense today consists primarily of the use of the PATRIOT system in the 
final phase. The navy Aegis ship anti-missile defense system is currently being considered for mod- 
ification for the reentry phase of anti-TBM mission, and the army is developing the THAAD (the- 
ater high altitude air defense) system for this same phase. The air force is currently developing 
boost phase systems. Although some work has been done on detecting and destroying launchers 
prior to or after a launch, operational experience in Desert Storm showed that current systems and 
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Figure 2: Cumulative Tail Distributions of Warheads Reaching Target Area 

Case J»i-(flS20} £[WkJ £[WW £[wy mwA E[Wr] 

ft = «2=1. Qi- «4*0.7, ft = 0.4 0.03 0 0 20 14 98 

ft = ft = 1, ft - ft = 0.6, ft = 0.3 0.46 0 0 20 12 72 

?1 = ft = 0.9, ft = g4 ■ 0.7, ft = 0.4 0.87 5.2 4.7 4.7 3.3 23 

Table 1: Sample Output for Numerical Example 

operational doctrine are ineffective. This current state can be modeled by setting px> p2, p$ and p4 

all equal to 0. We can set p5 at some value depending on how well one believes the PATRIOT 
works. As a base case by which to measure possible system improvement we setp5 to 0.7. Thus 

Base Case Kill Probability Vector = (0,0,0,0,0.7). (11) 



Also as a base case we assume that a launcher can launch at most 20 missiles before requiring ma- 
jor overhaul, or before it runs out of missiles, so m = 20. 

We look at three measures of effectiveness for the (random) number of warheads arriving in the 
target area, H. These are (i) the mean E[H], (ii) the median, or that value h such that Pr{H<h} = 0.5, 
and (w) the ninetieth percentile, or that value h such that Pr{H<h) = 0.90. We also look at the ex- 
pected number of active defense weapons required (E{WB], E[Wg}, and E[WF]), and the expected 
number of counterforce weapons (E[Wy). We first look at today's case where there is only one 
warhead per missile (n = 1), and show how some performance measures are affected by improving 
kill probabilities in each of the first four phases. This is followed by a similar analysis when mul- 
tiple warheads are considered. 

3.1 Single Warhead Analysis 
The mean numbers of warheads (and hence missiles since we are assuming one warhead per 

missile) that arrive in the target area shown plotted in Figure 3 as a function of the kill probability 
at a particular stage. The figure contains three curves. All three start at the same point (0,6) because 
the expected number of warheads reaching the target area, E[H], is 6 when m = 20, n = 1, the base 
case probabilities are given in (11), and Equations (1), (5), and (8) are used. We investigate the ef- 
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feet on E[H\ of increasing each of the four zero kill probabilities in (11) one at a time. 



The upper curve is found by increasing the kill probability of either the boost (p3) or reentry (p4) 
phase from its base value of 0 up to 0.8. In either case it decreases linearly with a slope of -6. The 
middle and lower curves are obtained by increasingp2 andpl respectively over the same range. The 
difference in the effect of a small increase in kill probability in the counterforce phases when com- 
pared to the active defense stages is dramatic; an increase from 0 to 0.1 in either to boost or reentry 
phases reduces £[//] from 6 to 5.4, whereas this same increase in the either of the counterforce stag- 
es reduces it from 6 to approximately 2.5. This significant improvement is caused by the fact that 
once a launcher (and its crew) is destroyed it can no longer fire missiles, causing a geometric re- 
duction in £[#]. In the active defense stages a kill results in the destruction of only one missile. 
The small improvement in increasing px rather than p2 is caused by the fact that keeping px at zero 
means the first missile from a launcher will be launched for certain, whereas increasing px gives a 
chance to destroy the launcher before its first missile flies. 

Figure 4 contains a similar analysis using the median number of warheads reaching the target 
area rather than the mean. Similar results are found For the base case the median of H is 5.4. In- 
creasing the boost or reentry kill probabilities from 0 to 0.1 reduces this to 4.8, whereas this in- 
crease in px or p2 reduces it to 1.3 and 1.6 respectively. In other words, using a kill probability 
vector (0.1,0,0,0,0.7) there is a fifty percent chance that fewer than 1.3 warheads will reach the 
target area, whereas using (0,0,0,0.1,0.7) or (0,0,0.1,0,0.7) this number is 4.8. 
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Figure 4: Median Number of Warheads Reaching Target 

Figure 5 contains a similar analysis using the ninetieth percentile of the number of warheads 
reaching the target For the base case there is a ninety percent chance that the number of warheads 
reaching the target area from a given launcher is no more than 8.2. Increasing the boost or reentry 
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Figure 5: Ninetieth Percentile of the Number of Warheads Reaching Target 

kill probabilities from 0 to 0.1 reduces this to 7.6 whereas an increase from 0 to 0.1 in px orp2 re- 
duces it to 5.5 or 5.7 respectively. Although by using this measure of effectiveness there is less of 
a difference between improving counterforce and active defense, the difference is still significant 

We now turn to measuring the effects of changing kill probabilities on the expected numbers of 
weapons used in each phase. Starting from the base case we assume that a zero kill probability in 
a given phase indicates that no attempt is being made to kill the launcher or missile in that phase. 
Table 2 demonstrates typical results that can be obtained from the model For the base case the 

Kill Probability Vector E[WBl} EiWul E[WB] E[W*\ E\WP] 
Expected 
Warheads 

Killed/Weapon 

(0,0,0,0,0.7)-Base Case 0 0 0 0 20 0.70 

(0,0,0,02,0.7) 0 0 0 20 16 0.42 

(0,0,0.2,0,0.7) 0 0 20 0 16 0.42 

(0,0.2,0,0,0.7) 0 4.94 0 0 4.94 1.88 

(0.2,0,0,0,0.7) 4.94 0 0 0 3.95 2.11 

TohlA ? • F.ffcrt of Tncreasins KillProl [»abilities < m Weapi 9ns Num bersand Effectiveness 

10 



expected number of weapons used per launcher when no attempt is made to destroy the missile be- 
fore the final phase, and assuming one weapon for each warhead, is equal to the number of missiles 
time warheads per missile that a launcher can launch. In this example that is 20. Also for the base 
case the expected number of warhead kills per weapon is equal to the final phase kill probability 
as should be expected. The remaining rows in Table 2 show the effect of increase the kill probabil- 
ity of each phase in turn from 0 to 0.2. Note the dramatic drop in the requirement for weapons in 
the final phase by having a modest effectiveness in counterforce versus the same effectiveness in 
the boost or reentry phases. In those phases a modest kill probability significantly increases the 
warhead kills/weapons used ratio. 

3.2 Multiple Warhead Analysis 
We repeat the analysis of Section 3.1 using the same base case kill probability vector shown in 

(11) and twenty missiles per launcher (m = 20), but in this section we assume each missile carries 
ten warheads (n = 10). The same types of results are illustrated in Figures 6,7 and 8 as were seen 
in Figures 3,4 and 5.  Li fact since the mean is linear in n the curves in Figure 5 are the same as 

0       0.1      0.2      0.3      0.4      0.5      0.6      0.7      0.8 
Kill Probability 

Figure 6: Mean Number of Warheads Reaching Target, Ten Warheads per Missile 

those in Figure 3 except the vertical scale has changed by a factor of 10. There is no simple rela- 
tionship between the median or the ninetieth percentile and n, although over some of the range of 
the kill probability the relationship appears to be approximately linear. For example, from Figure 4 
with n = 1 we see that a median number 2 for H (90% kill of the twenty possible warheads) can be 
achieved if pi orp2 are close to 0.08, whereas in the boost or reentry phases we would p3 orp4 to 

11 
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be 0.56 to achieve this success. From Figure 5 with n = 10 we see that a median number 20 for H 
(90% kill of the two hundred possible warheads) can be achieved if pt orp2 are close to 0.1, where- 
as in the boost or reentry phases we would p3 orp4 to be 0.65. Similarly, from Figure 5 we see that 
to achieve a ninetieth percentile of 2 when n = 1 requires either a px or p2 of about 0.28 or a p3 or 
pA of 0.81; from Figure 5 a ninetieth percentile of 20 when n = 10 requires either apx orp2 of about 
0.30orap3orp4of0.79. 

Table 3 shows the expected numbers of weapons required at each stage and the expected war- 
head kills per weapon when n = 10. By comparing the results with those in Table 2 it is clear that 
the required expected numbers of weapons at the counterforce, boost, or reentry phases does not 
change when warheads per missile increase from 1 to 10, but the number of weapons in the final 
stage increases by a factor of ten. These results should be expected since a successful kill at any 
phase before the warheads separate is assume to kill all n warheads. Note that the expected number 
of warheads killed per weapon increases significantly as n increases the earlier one can attack the 
IBM operation. In other words, counterforce is increasingly effective as the number of warheads 
carried by the missile increases. 

33 Normal Approximations 

For given values of m, n, and a kill probability vector, it is easy to calculate the expected value 
of H using Equations (1), (5), and (8); likewise one can easily find the variance using Equations 
(1), (2), (5), (6), and (9). But to find percentiles such as the median or the ninetieth percentile re- 
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Figure 8: Ninetieth Percentile of Warheads Reaching Target, Ten Warheads per Missile 

Kill Probability Vector WAIJ EfW„} E[WB] E\W*} E[WF] 
Expected 
Warheads 

Killed/Weapon 

(0,0,0,0,0.7)-Base Case 0 0 0 0 200 0.70 

(0,0,0,0.2,0.7) 0 0 0 20 160 0.84 

(0,0,0.2,0,0.7) 0 0 20 0 160 0.84 

(0,0.2,0,0,0.7) 0 4.94 0 0 49.4 3.41 

(0.2,0,0,0,0.7) 4.94 0 0 0 39.5 4.23 

Table 3: Expected Weapons Numbers and Effectiveness with Ten Warheads per Missile 

quires the distribution function of H, a much more complex calculation using Equations (4), (7), 
and (10). These equations were used to find the curves in Figures 2,4,5,7, and 8. Recall that H is 
not a simple sum of independent random variables, but results from a complex set of five random 
events, the first two of which have a truncated geometric distribution, the next two a conditional 
binomial distribution, and the last is a random sum of these weighted binomials. Even so, one 
might suspect that its distribution is approximately normal for at least some range of the parameter 
values, in which case the percentiles can be estimated using only the mean and variance of//. We 
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investigate the appropriateness of a normal approximation for the median and ninetieth percentiles 
of H in this section. 

Since the normal is a symmetric distribution its mean and median are equal. Table 4 contains 

Kill Probability Vector 

Ten Warheads per Missile 
(« = 10) 

One Warhead per Missile 
(« = D 

Median Normal 
Approximation Median Normal 

Approximation 

(0,0,0,0,0.7)-Base Case 59.3 60.0 5.4 6.0 

(0,0,0,0.2,0.7) 
or 

(0,0,0.2,0,0.7) 
47.6 48.0 4.2 4.8 

(0,0.2,0,0,0.7) 10.3 14.8 0.6 1.5 

(0.2,0,0,0,0.7) 7.1 11.9 0.2 1.2 

(0.2,0.2,0.3,0.5,0.7) NA 2.3 NA 0.2 

Table 4: Normal Approximation for the Median 

actual medians and normal approximations for the base case and kill probability vectors used in 
Sections 3.1 and 3.2, and an example that assumes positive kill probabilities in all five stages. The 
normal approximation seems to perform reasonably well for the ten warhead case when there are 
zero kill probabilities in the counterforce stages; it does less well in the single warhead case. When 
Pi and/or/?2 are significantly larger than zero, the distribution of H is highly skewed and the normal 
approximation for the median is poor. The entries NA (not applicable) in the table indicate that the 
probability that H is zero is larger than 0.5 so that no median value exists. 

Figure 9 contains cumulative tail distributions (solid lines) and normal approximations (dashed 
lines) for the kill probability vectors in Table 3 and one warhead per missile. For none of the ex- 
amples is the normal approximation close to the actual distribution except in the extreme tails. It 
is particularly poor when there is a positive probability of kill by counterforce. 

Figure 10 contains cumulative tail distributions (solid lines) and normal approximations 
(dashed lines) for the kill probability vectors in Table 3 and ten warheads per missile. When there 
is no counterforce the normal approximation is close to the actual distribution over the whole 
range, but again there are significant differences when there is a positive probability of kill by coun- 
terforce. 

As one might expect the approximation does quite well when H is a fixed (non-random) sum of 
binomial random variables. Since this number is considerably larger when multiple warheads are 
present it does significantly better in this case. With positive counterforce probabilities the truncat- 
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Figure 9: Cumulative Tail Distributions and Normal Approximations, n -1 

ed geometric distribution of the number of missiles launch leads to skewing of the distribution of 
H. In this case the normal approximation shows significant error. 

It is not recommended that the normal approximation be used for the median (or equivalenüy 
mat the median and mean be assumed to take on the same value). Nor is it recommended that it be 
used as an approximation to the tail distribution unless multiple warheads are assumed to be 
present and the only significant source of uncertainty is in the final stages of the TBM operation. 
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Figure 10: Cumulative Tail Distributions and Normal Approximations, n -10 

4 Conclusions 
The model in this report shows that both counterforce and active defense will form essential 

parts of any future successful system for theater ballistic missile defense. Without counterforce it 
will be relatively easy for the enemy to overwhelm a feasible active defense system. A system that 
can successfully destroy launchers and their crews will provide considerable leverage in reducing 
die numbers of active defense weapons required; this leverage increases dramatically as the num- 
ber of warheads on each missile increases. The model allows the calculation of percentiles of the 
numbers of warheads destroyed rather than simple expected values. 

Past experience in finding and destroying launchers has demonstrated little success in this areas. 
As was discussed in Conner, Ehlers, and Marshall [1993], success will most likely require a far 
more structured approach than has been used. A model for such a structure is that used in anti-sub- 
marine warfare where great experience has been gained in the past fifty years at finding and de- 
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straying torpedo underwater missile launchers. It is expected that the successful counterforce 
against launchers on land will require efforts in cuing, search, detection, localization, classification 
and destruction. Current efforts can be thought of as attempting to skip from cuing (for example, 
flaming datum information after launch) to attack. Future reports will consider how one might best 
accomplish the in-between phases to produce successful counterforce against mobile missile 
launchers. 
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APPENDIX 

Expressions are derived below for the first two of a non-negative integer-valued random variable 
in terms of its cumulative tail distribution. Let X be such a random variable and let Pi = Pr{X = i), 
1 = 0,1,2,... . 

First Moment 
E\X] =pi + 2p2 + 3p3 + 4p4 + ... 

+p2 +p2 

+p3 +p3 +p3 

+P4 +P4 +P4 +
PA 

+ ... 

=Pr{X>0} + Pr{X>l) + Pr{X>2] +Pr{X>3} + 

Result 1:   E[X] = y£Pr{X>i} 
i-0 

Second Moment 

E[X2] =pi + 4p2 + 9p3 + 16p4 + ... 

=Pi 

+p2+p2+p2+p2 

+ p3 +p3 +P3+P3 +P3 +P3+P3 +P3 +P3 

+ P4+P4 +P4 +P4+P4+P4 + P4 +P4 +P4 +P4 +P4 +/>4 + />4 +P4+P4 + P4 

+ ... 

=Pr{X>0} + 3MX>l}       +5Pr{X>2} + 7Pr{X>3}+ ... 

Result2:      £[X2] = £ <2f+l)/»r{X>i} = 2£iPr{X>0 +£[X] 
i-o «-1 
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